PROGETTAZIONE E SINTESI DI NUOVI LIGANDI DEI RECETTORI ADENOSINICI

L'adenosina è un nucleoside prodotto in seguito a danno tissutale correlato a ischemia e ipossia. La produzione di adenosina extracellulare e la relativa trasmissione di segnali attraverso specifici recettori (ARs: A1, A2A, A2B e A3) giocano un ruolo fondamentale nei processi fisiopatologici conseguenti a danno tissutale. I recettori adenosinici sono quindi emersi come promettenti target terapeutici verso un'ampia gamma di condizioni che includono disordini cerebrali, cancro e infiammazione. Il progetto in corso include pertanto la progettazione e la sintesi di nuovi ligandi dei recettori adenosinici, per il relativo potenziale terapeutico oltre che per l'importanza come tool farmacologici per studi recettoriali.

OBIETTIVI

- Sviluppo di nuovi modulatori allosterici del recettore adenosinico A1 quali potenziali agenti per la cura del dolore neuropatico.
- Sviluppo di nuovi agonisti e antagonisti del recettore adenosinico A2A (potenzialmente utili per il trattamento della sindrome di Parkinson e di patologie infiammatorie).
- Sviluppo di nuovi agonisti e antagonisti del recettore adenosinico A2B (potenzialmente utili per il trattamento di patologie cardiache e dell'asma).
- Sviluppo di nuovi agonisti e antagonisti del recettore adenosinico A3 (potenzialmente utili per il trattamento di cancro e patologie oftalmiche).

STRUMENTAZIONI E METODI

I composti verranno progettati e sintetizzati con l'ausilio di attrezzature standard per la sintesi tradizionale in fase liquida. La struttura e la purezza dei composti saranno determinate tramite spettroscopia NMR, massa electrospray, UPLC, UV e IR.

DISCIPLINE COINVOLTE

Chimica farmaceutica, chimica organica, farmacologia, biologia molecolare

GRUPPO DI LAVORO

Romeo Romagnoli

Barbara Cacciari

COLLABORAZIONI

Prof. K. Varani, Prof. S. Gessi (Dipartimento di Scienze Mediche, Università di Ferrara), Prof. Ad P. IJzerman (Leiden/Amsterdam Center for Drug Research)